ОПТИМИЗАЦИОННЫЕ АЛГОРИТМЫ ВЫДЕЛЕНИЯ ИНФОРМАТИВНЫХ ПРИЗНАКОВ ДЛЯ ПРОГНОЗИРОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ ЛЕТАТЕЛЬНЫХ АППАРАТОВ¹

Вересников Г.С., Скрябин А.В., Голев А.В.

Институт проблем управления им. В.А. Трапезникова РАН, Москва, Россия veresnikov@mail.ru, skryabinalexey@gmail.com, oiw23@mail.ru

Аннотация. В статье предлагаются оптимизационные алгоритмы выделения информативных признаков для прогнозирования технического состояния электромеханических систем с применением методов спектрального анализа и анализа временных рядов. Приводятся результаты исследования разработанных алгоритмов на данных, полученных использованием математической модели электромеханического привода беспилотного летательного аппарата.

Ключевые слова: диагностика, прогнозирование, спектральный анализ, быстрое преобразование Фурье, оптимизационные модели, отбор признаков.

Введение

Актуальность прогнозирования технического состояния электромеханических систем (ЭС) обусловлена необходимостью обеспечения безопасности и эффективности эксплуатации сложных технических объектов. Особо важное значение эта проблема имеет при реализации концепции «полностью электрического самолета», в рамках которой ЭС находят широкое применение в системах управления полетом. Также в настоящее время ЭС широко применяются в промышленности, беспилотной авиации, космической технике, наземном и водном транспорте. Возможность получения прогноза, отражающего упреждающую информацию о возникновении и параметрах развития деградаций, приводящих к неисправностям в ЭС с учетом различных режимов функционирования и значимых факторов воздействия, позволяет принимать своевременные решения по предотвращению нештатных ситуаций, вызывающих нарушение работоспособности контролируемого объекта. В связи с этим построение систем ранней диагностики ЭС с использованием методов ретроспективного анализа имеет высокую практическую значимость.

В мировой научной литературе значительное внимание уделяется применению методов машинного обучения для диагностики ЭС. При оценке технического состояния ЭС используются нейронные сети [1, 2], деревья решений [3], логистическая регрессия [4], метод опорных векторов [5], к-ближайших соседей [6] и т.д. Методы машинного обучения позволяют найти в эмпирических данных неочевидные нелинейные закономерности, которые могут применяться для разделения множеств значений контролируемых параметров ЭС на классы, соответствующие обобщенным техническим состояниям контролируемого объекта. Эти закономерности формализуются в классификационных моделях, которые принимают на входе набор признаков, сформированных на основе значений контролируемых параметров (сигналов ЭС), и выдают на выходе метку класса, определяющую оценку технического состояния ЭС.

Для решения проблемы «проклятия размерности» и повышения качества классификационных моделей применяются методы извлечения и отбора признаков [7]. В частности, применение этих методов позволяет снизить количество входных параметров (признаков), повысить точность, устойчивость к шуму классификационных моделей.

Прогнозирование технического состояния ЭС на основе ретроспективных данных обычно базируется на методах анализа временных рядов, с использованием которых выполняется экстраполяция значений признаков, используемых в классификационных моделях [8, 9]. При этом на этапах извлечения и отбора признаков проблема построения прогнозных моделей обычно не рассматривается. В статье предлагаются алгоритмы, которые предназначены для поиска диапазонов интегрирования спектра стационарного сигнала, обеспечивающих максимальные показатели качества моделей прогнозирования технического состояния ЭС. В первом разделе статьи рассматриваются оптимизационные модели, на которых основаны эти алгоритмы, приводится формальное описание и рассматриваются вопросы программной реализации. Во втором разделе приводятся результаты расчетных исследований, в которых разработанные алгоритмы применяются в целях выделения

¹ Исследование выполнено частично за счет гранта Российского научного фонда (проект № 23-19-00464)

информативных признаков для прогнозирования деградаций электромеханического привода (ЭМП), связанных с изменением сухого трения (*M*_{CF}) и люфта (*BL*).

1. Оптимизационные модели

Пусть на основе измерений каждого контролируемого параметра с заданной периодичностью формируются множества $M_1, ..., M_D$ стационарных временных последовательностей, характеризующие изменение технического состояния ЭС во времени. Здесь D – количество сформированных множеств временных последовательностей. В целях упрощения будем считать мощность множеств (циклов отработки) $M_1, ..., M_D$ одинаковой.

Для каждой стационарной временной последовательности, входящей в множество M_i , i=1, ..., D, строится амплитудный спектр с использованием быстрого преобразования Фурье. В результате формируется упорядоченная по времени последовательность множеств $S_1,...,S_D$, состоящих из амплитудных спектров. Далее множества $S_1,...,S_D$ используются для формирования множеств $S'_1(\bar{x}),...,S'_D(\bar{x})$, состоящих из обобщенных характеристик, вычисленных на основе амплитуд спектров с номерами отсчетов, попадающими в диапазоны, задаваемые вектором \bar{x} . Нечетные и четные элементы вектора \bar{x} содержат номера отсчетов, определяющие соответственно левые и правые границы диапазонов спектра. Количество диапазонов, задаваемых вектором \bar{x} , выбирается экспертом экспериментально. Значения элементов вектора \bar{x} определяются при выполнении оптимизационных расчетов. В работе для вычисления обобщенных характеристик используется интегрирование спектра – суммирование амплитуд на информативных частотах. Проблема выбора алгоритма расчета обобщенных характеристик является предметом отдельных исследований, поэтому в статье не рассматривается.

Предлагается применять 2 подхода к обработке множеств $\dot{S_1}(\bar{x}), ..., \dot{S_D}(\bar{x})$:

- множества $S'_1(\bar{x}), ..., S'_D(\bar{x})$ без изменения используются для оценки коэффициентов статистической регрессионной модели построения модели тренда.
- множества S₁(x),..., S_D(x) преобразуются статистическими методами для снижения количества входящих в них элементов, а затем используются для оценки коэффициентов статистической регрессионной модели.

Практика показывает, что предварительная обработка множеств $S'_1(\bar{x}),...,S'_D(\bar{x})$ нередко обеспечивает повышение качества моделей тренда, т.к. позволяет исключить из анализа «выбросы» – данные, значительно выделяющиеся из генеральной выборки. В каждом множестве после статистической обработки может остаться по 1 элементу и тогда множества $S'_1(\bar{x}),...,S'_D(\bar{x})$ преобразуются во временной ряд (например, в результате вычисления числовых характеристик случайных величин, рассчитанных на основе значений из этих множеств).

Разработаны обобщенные оптимизационные модели 1-3, в которых используются критерии оптимизации и ограничения, учитывающие выраженность и адекватность тенденций изменения признаков для прогнозирования технического состояния ЭС. Эти критерии и ограничения вычисляются на основе множеств $S'_1(\bar{x}), ..., S'_D(\bar{x})$ и моделей трендов, построенных на их основе.

Применение модели 1 позволяет найти диапазоны интегрирования спектра, обеспечивающие построение на основе $S'_1(\bar{x}), ..., S'_D(\bar{x})$ «выраженного» восходящего тренда, характеризующегося высоким уровнем адекватности соответствующей ему статистической регрессионной модели.

Модель 1. Многокритериальная оптимизационная модель для выделения информативных признаков.

$$\begin{cases} \max_{\bar{x}, f \in O\{f\}, \bar{p} \in O\{\bar{p}\}} E(\bar{x}, f, \bar{p}), \\ \max_{\bar{x}, f \in O\{f\}, \bar{p} \in O\{\bar{p}\}} \{Q_1(\bar{x}, f, \bar{p}), \dots, Q_n(\bar{x}, f, \bar{p})\}, \\ d(\bar{x}) \le d', \end{cases}$$

где \bar{x} – вектор оптимизируемых целочисленных параметров, содержащий границы диапазонов для вычисления обобщенных характеристик спектра; f – вектор категориальных значений, определяющих вид функции, используемой для построения статистических регрессионных моделей тренда; $d(\bar{x})$ – общее или максимальное количество спектральных отсчетов, входящих в диапазоны, задаваемые вектором \bar{x} ; d' – пороговое значение для $d(\bar{x})$; Q_1, \ldots, Q_n – критерии, отражающие адекватность моделей тренда; \bar{p} – параметры алгоритма вычисления обобщенных характеристик на основе амплитуд спектров; $O\{\bullet\}$ – область допустимых значений параметра/вектора • (для вектора область допустимых значений представляется декартовым произведением множеств значений элементов этого вектора).

В качестве оптимизационных критериев модели 1, отражающих выраженность восходящей тенденции, задаваемой моделью тренда, например, могут использоваться:

- угол наклона линейного тренда, нормированного на максимальный элемент;
- нормированное расстояние между последним и первым значением тренда (соответствуют краям диапазона от 1 до *D*) относительно максимального значения.

В качестве оптимизационных критериев модели 1, отражающих адекватность моделей тренда, могут применяться коэффициент детерминации R^2 , средняя абсолютная процентная ошибка МАРЕ, симметричная МАРЕ, средняя абсолютная масштабированная ошибка MASE, средняя абсолютная масштабированная (относительно среднего уровня ряда) ошибка SMAE, относительная MAE – rMAE, средняя процентная ошибка MPE, корень из средней квадратичной ошибки RMSE, относительный rRMSE [10]. В этой статье рассматривается только коэффициент детерминации R², т.к. анализ эффективности использования перечисленных коэффициентов в предложенных оптимизационных моделях 1-3 является предметом отдельных исследований.

Так же список показателей Q_1, \ldots, Q_n может учитывать возможность применения моделей автопрогнозирования после детрендирования временного ряда. Например, пусть для уточнения прогноза, полученного по модели тренда, используется модель ARMA(p, q), имеющая следующий вид [11]:

$$S'_t = \sum_{i=1}^p a_i S'_{t-i} + \epsilon_t + \sum_{j=1}^q \theta_j \epsilon_{t-j}$$

где ε_t - гауссовский белый шум; a_i , θ_i – оцениваемые параметры модели.

Тогда автоматизированный выбор порядка авторегрессии р и скользящего среднего q модели ARMA в рамках оптимизационных расчетов может обеспечиваться применением информационных критериев Акаике, Шварца и Хеннана-Куинна, а в качестве критериев оптимизации использоваться коэффициенты асимметрии Skewness, эксцесса Kurtosis, коэффициент Jarque-Bera и показатели точности на внутренней и внешней выборках.

Для модели 1 характерны высокие вычислительные затраты на выполнение оптимизационных расчетов, которые можно снизить посредством перевода критериев оптимизации в ограничения, получив модели 2 и 3.

Модель 2. Однокритериальная оптимизационная модель (критерий оптимизации – выраженность тренда):

$$\begin{cases} \max_{\bar{x}, f \in O\{\bar{f}\}, \ \bar{p} \in O\{\bar{p}\}} E(\bar{x}, f, \bar{p}), \\ Q_1(\bar{x}, f, \bar{p}) \leq Q_1', \dots, Q_n(\bar{x}, f, \bar{p}) \leq Q_n', \\ d(\bar{x}) \leq d', \end{cases}$$

где $Q_1^{'},...,Q_n^{'}$ – заданные пороговые значения для $Q_1(\bar{x},f,\bar{p}),...,Q_n(\bar{x},f,\bar{p})$. Модель 3. Однокритериальная оптимизационная модель (критерий оптимизации – адекватность модели тренда):

$$\begin{cases} \max_{\bar{x}, f \in O\{f\}, \ \bar{p} \in O\{\bar{p}\}} \{ Q_1(\bar{x}, f, \bar{p}), \dots, Q_n(\bar{x}, f, \bar{p}) \}, \\ E(\bar{x}, f, \bar{p}) < E', \\ d(\bar{x}) < d', \end{cases}$$

где \vec{E} – заданное пороговое значение для $E(\vec{x}, f, \vec{p})$.

С использованием моделей 1-3 и генетических алгоритмов, реализованных в матлаб, разработаны оптимизационные алгоритмы выделения информативных признаков для прогнозирования технического состояния ЭС. Результаты расчетных исследований этих алгоритмов приводятся в разделе 2.

2. Результаты расчетных исследований

Разработанные алгоритмы исследованы и верифицированы на данных, полученных с использованием моделирования отработки входных периодических треугольных сигналов ЭМП. Для моделирования деградаций ЭМП момент сухого трения последовательно изменяется от 0,25 до 1,7 с шагом 0,05, люфт изменяется от 0,05 до 1,5 с шагом 0,05. При зафиксированных значениях момента сухого трения и люфта с добавлением случайной компоненты для каждого контролируемого параметра сформированы стационарные временные последовательности 1, ..., D (D=30), которые являются входной информацией для алгоритмов выделения информативных признаков. Эти стационарные временные последовательности составляют множества $M_1, ..., M_D$, которые требуются для применения моделей и алгоритмов, описанных в разделе 1.

В качестве контролируемых параметров ЭМП в исследовании рассматривались: положение ротора электродвигателя (ЭД), приведенное к выходному валу (град), положение выходного вала (град), напряжение ЭД (В), сила тока ЭД (А), потребляемая мощность ЭД (Вт), угловая скорость ротора ЭД (об/мин), момент ротора ЭД (мНм), мощность на валу ЭД (Вт), угловая скорость на выходном валу (град/с). Для каждого из этих параметров при отдельных деградациях ЭМП по M_{CF} и BL были построены Парето-фронты с использованием оптимизационных алгоритмов, основанных на модели 1.

Приведем графики Парето-фронтов для параметров «положение выходного вала» и «потребляемая мощность ЭД» при деградации по *M*_{CF}, как наиболее показательные.

Рис. 1. Парето-фронт, полученный с использованием модели 1 для параметра «Положение выходного вала» (деградация по M_{CF})

Рис. 2. Парето-фронт, полученный с использованием модели 1 для параметра «Потребляемая мощность ЭД» (деградация по M_{CF})

На рис. 3-4 для контролируемых параметров «Положение выходного вала» и «Потребляемая мощность ЭД» представлены динамика изменения суммы амплитуд (Data), тренд (Fit), доверительные интервалы (Confidence bounds), которые были построены на последней итерации выполнения оптимизационных расчетов по модели 1 при деградации ЭМП по *M*_{CF}. Каждому из этих рисунков соответствуют одна точка (решение) Парето-фронта, приведенного на рис. 1-2. Для сравнения

приводятся решения, обеспечивающие максимальный угол наклона тренда. Это связано с тем, что некоторые точки Парето-фронта с максимальным значением коэффициента детерминации R^2 соответствуют 0-му углу наклона и поэтому соответствующие им модели тренда не могут использоваться для прогнозирования технического состояния ЭМП.

Рис. 3. Тренд для диапазона интегрирования спектра [47; 47] и R²= 0,99506 («Положение выходного вала», деградация по M_{CF})

Рис. 4. Тренд для диапазона интегрирования спектра [138; 138] и R² = 0.86725, («Потребляемая мощность ЭД», деградация по M_{CF})

На рис. 3-4 видно, что полученные модели трендов могут использоваться при прогнозировании технического состояния ЭМП при деградации по *M*_{CF}.

На рис. 5-6 для параметров «напряжение ЭД» и «потребляемая мощность ЭД» представлены Парето-фронты, которые являются результатом применения алгоритма выделения информативных признаков, основанного на модели 1, при деградации ЭМП по *BL*.

Рис. 5. Парето-фронт, полученный с использованием модели 1 для параметра «Напряжение ЭД» (деградация по BL)

Рис. 6. Парето-фронт, полученный с использованием модели 1 для параметра «Потребляемая мощность ЭД» (деградация по BL)

Сравнение полученных Парето-фронтов показывает, что максимальные коэффициенты детерминации R^2 значительно отличаются. Для параметра «Напряжение ЭД» характерны высокие углы наклона нормированного тренда и адекватность его модели. При этом для параметра «Потребляемая мощность ЭД» адекватность модели тренда можно считать низкой при высокой выраженности тренда.

На рис. 7-8 для контролируемых параметров «Напряжение ЭД» и «Потребляемая мощность ЭД» представлены динамика изменения суммы амплитуд (Data), тренд (Fit), доверительные интервалы (Confidence bounds).

Рис. 7. Тренд для диапазона интегрирования спектра [100; 100] и R²= 0,92923 (Напряжение ЭД, деградация по BL)

Рис. 8. Тренд для диапазона интегрирования спектра [137; 137] и R²= 0,47746 (Потребляемая мощность ЭД, деградация по BL)

На рис. 7-8 видно, что уменьшение коэффициента детерминации ведет к снижению качества моделей прогнозирования. Соответственно модель тренда на рис. 7 можно использовать при прогнозировании технического состояния ЭМП при деградации по BL, а модель тренда на рис. 8

нельзя. Если множество Парето-решений позволяет, то рекомендуется выбирать компромиссное решение между углом наклона нормированного тренда и значением коэффициента детерминации.

Увеличение количества диапазонов интегрирования позволяет добиться смещения Парето-фронта в область «лучших» значений целевых функций. Пример представлен на рис. 9.

Рис. 9. Парето-фронт, полученный с использованием модели 1, для параметра «Угловая скорость на выходном валу» (деградация по BL), линия 1 – 1 диапазон интегрирования, линия 2 – 2 диапазона интегрирования

Таким образом, расчетные исследования показали, что применение предложенных оптимизационных моделей позволяет решать задачу формирования множества признаков, которые могут использоваться при прогнозировании технического состояния ЭС.

3. Заключение

Разработаны оптимизационные алгоритмы, позволяющие выделить информативные признаки для прогнозирования технического состояния ЭС. Эти алгоритмы могут применяться как в исследовательских целях при анализе одного случая деградации ЭС, так и в целях предобработки данных при построении классификационных моделей, предназначенных для реализации в системе ранней диагностики ЭС. Результаты расчетных исследований на примере диагностики технического состояния эмоделей, предназначенных для реализации в системе ранней диагностики ЭС. Результаты расчетных исследований на примере диагностики технического состояния ЭМП, связанных с изменением люфта и сухого трения, показывают адекватность и перспективность дальнейшего развития разработанных алгоритмов. Дальнейшие исследования предлагается направить на повышение эффективности разработанных алгоритмов посредством поиска критериев оптимизации, позволяющих повысить точность и устойчивость к шуму прогнозных моделей.

Литература

- Arellano-Espitia F., Delgado-Prieto M., Martinez-Viol V., Saucedo-Dorantes J.J., Osornio-Rios R.A. Deep-Learning-Based Methodology for Fault Diagnosis in Electromechanical Systems // Sensors. – 2020. – Vol. 20, Issue 14. – P. 3949.
- Arellano-Espitia F., Delgado-Prieto M., Martínez-Viol V., Fernández-Sobrino Á., Osornio-Rios R.A. Anomaly Detection in Electromechanical Systems by means of Deep-Autoencoder // Proceedings of the 26th International Conference on Emerging Technologies and Factory Automation (ETFA). – 2021. – IEEE, Vasteras, Sweden. – P. 21466790.
- 3. Azevedo B.C.F., Bressan G.M., Agulhari C.M., Santos H.L., Endo W. Three-Phase Induction Motors Faults Classification using Audio Signals and Decision Trees // Applied Mathematics & Information Sciences. 2019. Vol. 13, № 5. P. 847–858.
- Bodla M.K., Malik S.M., Rasheed M.T., Numan M., Ali M.Z., Brima J.B. Logistic regression and feature extraction based fault diagnosis of main bearing of wind turbines // Proceedings of the 11th Conference on Industrial Electronics and Applications. – 2016. – IEEE, Hefei, China. – P. 1628–1633.

- 5. *Shui Y., Ming G., Hai Q., Jay L., Yangsheng X. Intelligent diagnosis in electromechanical operation systems //* Proceedings of the IEEE International Conference on Robotics and Automation. 2004. Vol. 3. P. 2267–2272.
- Borja C.A., Tisado K.J., Ostia C. Fault Diagnosis of a Brushless DC Motor Using K-Nearest Neighbor Classification Technique with Discrete Wavelet Transform Feature Extraction // Proceedings of the 14th International Conference on Computer and Automation Engineering (ICCAE). – 2022. – IEEE, Brisbane, Australia. – P. 21760713.
- Hiu-Man W., Xingjian C., Hiu-Hin T., Jiecong L., Shixiong Z., Shankai Y., Xiangtao L., Ka-Chun W. Feature Selection and Feature Extraction: Highlights // Proceedings of the 5th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. – 2021. – Victoria Seychelles. – P. 49-53.
- Grzesica D., Wiecek P. Advanced Forecasting Methods Based on Spectral Analysis // Procedia Engineering. 2016. – Vol. 161. – P. 253–258.
- 9. *Li W.Q., Zhang C.* Application of Combination Forecasting Model in Aircraft Failure Rate Forecasting // Computational Intelligence and Neuroscience. 2022. Vol. 2022. P. 36172319.
- 10. Shcherbakov M., Brebels A., Shcherbakova N.L., Tyukov A., Janovsky T.A., Kamaev V.A. A survey of forecast error measures // World Applied Sciences Journal. 2013. Vol. 24. P. 171–176.
- 11. Kozitsin V., Katser I., Lakontsev D. Online Forecasting and Anomaly Detection Based on the ARIMA Model // Applied Sciences. 2021. Vol. 11, № 7. P. 3194.